What is an Inertial Measurement Unit (IMU)?
When navigating the complexities of motion sensing and navigation systems, it is essential to understand the distinctions between devices and systems like Inertial Measurement Units (IMUs), Inclinometers, Roll & Pitch sensors, Vertical Reference Units (VRU), Attitude and Heading Reference Systems (AHRS), Motion Reference Units (MRUs), Gyrocompasses, and GNSS-Aided Inertial Navigation Systems (GNSS/INS). Each serves specific purposes and offers different levels of functionality, accuracy, and application scope.
Inertial Measurement Unit (IMU)
Definition: An IMU is an electronic device that measures and reports an object's linear acceleration and angular velocity using a combination of accelerometers and gyroscopes along three orthogonal axes (X, Y, and Z). It achieves this by utilizing a combination of sensors—primarily accelerometers and gyroscopes, and occasionally magnetometers. IMUs only provide raw data from their sensors and do not include "smart" features such as processing (e.g., Kalman Filter). The IMU cannot provide attitude (roll and pitch), velocity, or position without external processing.
Key Features:
- Sensors Included: Accelerometers (measure linear acceleration) and gyroscopes (measure angular rate).
- Output: Raw sensor data on acceleration and rotation rates.
- Functionality: Provides fundamental motion data without further processing to determine attitude, velocity, or position.
Applications: Used in systems where raw inertial data is sufficient or will be processed further by an external system.
Example Uses:
- Basic navigation systems: Where external processing is available.
- Robotics: For control algorithms requiring raw motion data.
- Stabilization of cameras and drones.
Selecting the appropriate sensor depends on the required measurements, environmental conditions, and budget.
- Use an IMU when you need raw acceleration and rotational data.
- Use an Inclinometer for simple, static tilt measurements.
- Use a Roll & Pitch Sensor for lower-level attitude measurements in a dynamic setting.
- Use a VRU when precise roll and pitch measurements are needed in a dynamic environment.
- Use an AHRS for roll, pitch, and heading data.
- Use an MRU for comprehensive motion data in dynamic marine environments.
- Use a Gyrocompass for accurate true north heading.
- Use a GNSS/INS for continuous, absolute position, velocity, and orientation data.
Related products

Usage area
50 m depth, IP 68
Connectors
Lemo or SubConn 8 or SubConn 16
Roll & Pitch accuracy
- 3000±0.05°
- 6000±0.02°
- 9000±0.01°
Heave accuracy
5 cm or 5.0%

Usage area
IP 65
Connectors
RJ45 or RJ50
Roll & Pitch accuracy
- 3000±0.05°
- 6000±0.02°
- 9000±0.01°
Heave accuracy
5 cm or 5.0%

Usage area
6000 m depth
Connectors
SubConn 8
Roll & Pitch accuracy
- 3000±0.05°
- 6000±0.02°
- 9000±0.01°
Heave accuracy
5 cm or 5.0%

Usage area
Hazardous areas
Connectors
Pigtail cable
Roll & Pitch accuracy
- 3000±0.05°
- 6000±0.02°
- 9000±0.01°
Heave accuracy
5 cm or 5.0%
Further reading

Advanced motion compensation for sonars introduced at Ocean Business 2025

MRUs for vessel performance optimisation in focus at Europort 2025

Research Project to Test Value of MRU Data for Vessel Performance and Carbon Reduction
Related questions
- Read the full answerThe MRU Marine is IP-68 rated with Lemo connectors and LEDs. The Marine SW supports 50m depth, uses SubConn connectors, and comes in two versions differing by available output combinations. 
- Read the full answerA gyrocompass determines true north using gyroscopes and Earth's rotation, not magnetism. It’s essential for heading accuracy in marine and aerial navigation, though performance may vary at extreme latitudes. 
- Read the full answerPassive PoE powers the MRU Compact via standard Ethernet cable without negotiation. It’s not compatible with most PoE switches (which use Active PoE), so a splitter or converter is typically required. 
Check out
Pariatur ullamco aute exercitation nostrud ullamco tempor officia pariatur occaecat eu ex pariatur. Adipisicing amet sunt minim do tempor duis ea cillum ea nulla ipsum ex. Nisi tempor nisi cillum ex dolor proident eu. Nisi velit elit eu pariatur magna aliqua Lorem amet duis. Eiusmod pariatur consequat elit aliqua cupidatat deserunt nostrud exercitation ullamco voluptate enim reprehenderit velit exercitation occaecat. Exercitation incididunt ut consectetur nostrud dolor aute. Deserunt amet occaecat enim exercitation ut dolore ad ullamco proident non nulla. Qui aute tempor culpa amet.